## **Preliminary communication**

# SELENOCARBONYL COMPLEXES OF IRIDIUM(I) AND IRIDIUM(III). SYNTHESIS AND REACTIONS OF IrCl(CSe)(PPh<sub>3</sub>)<sub>2</sub>

W.R. ROPER<sup>\*</sup> and K.G. TOWN Department of Chemistry, University of Auckland, Auckland (New Zealand) (Received May 20th, 1983)

#### Summary

A five-step conversion of  $IrCl(CO)(PPh_3)_2$  into  $IrCl(CSe)(PPh_3)_2$  via  $Ir(\eta^2 - CSe_2)Cl(CO)(PPh_3)_2$  is described.  $IrCl(CSe)(PPh_3)_2$  is oxidized by  $Cl_2$  to  $IrCl_3(CSe)(PPh_3)_2$  and by  $O_2$  to  $Ir(\eta^2 - O_2)Cl(CSe)(PPh_3)_2$ , and reaction with Ag<sup>+</sup> in MeCN gives  $[Ir(CSe)(MeCN)(PPh_3)_2]^+$ . NaBH<sub>4</sub> in the presence of PPh<sub>3</sub> reduces  $IrCl(CSe)(PPh_3)_2$  completely to  $IrH_2(SeMe)(PPh_3)_3$  and the  $\eta^2$  -CSe<sub>2</sub> adduct,  $Ir(\eta^2 - CSe_2)Cl(CSe)(PPh_3)_2$ , with MeI forms the metallacycle  $[Ir(C[SeMe]SeC[SeMe])I_2(PPh_3)_2]^+$ .

Interesting discoveries have followed the study of transition metal thiocarbonyl complexes. These include (i) the alkylation of S in low valent CS complexes which constitutes an important route to thiocarbyne complexes [1], (ii) the involvement of CS in migratory-insertion reactions which has led to thioacyl groups [2] and for the special case of hydride migration, to thioformyl and thence to formyl ligands [3], (iii) the formation of unsaturated metallacycles, e.g. "metallabenzenes" [4] and "metallacyclobutadienes" [5]. Similar chemistry must await discovery for selenocarbonyl complexes but the growth of this area is restricted by generally unsatisfactory synthetic routes to selenocarbonyl-containing starting materials. Presently available methods rely on modification and fragmentation of  $\eta^2$ -CSe<sub>2</sub> [6] or  $\eta^2$ -CSeS [7] and substitution reactions of CCl<sub>2</sub> complexes [8,9]. An obvious synthetic target is  $IrCl(CSe)(PPh_3)_2$  especially in view of the important role  $IrCl(CO)(PPh_3)_2$  has played in organometallic chemistry and the fact that  $IrCl(CS)(PPh_3)_2$  was one of the first thiocarbonyl complexes to be described. As a first step in the examination of the selenocarbonyl chemistry of iridium we describe here a straightforward five-step conversion of  $IrCl(CO)(PPh_3)_2$ to  $IrCl(CSe)(PPh_3)_2$  and some further simple reactions of this new complex.

The preparation of  $IrCl(CSe)(PPh_3)_2$  follows the steps outlined in Scheme 1.



SCHEME 1. Conversion of  $IrCl(CO)(PPh_3)_2$  to  $IrCl(CSe)(PPh_3)_2$  (L = PPh\_3).

The  $\eta^2$ -CSe<sub>2</sub> adduct has been described previously [10]. Methylation with MeI yields the  $\eta^2$ -diselenomethylester complex which is readily converted to a  $\eta^1$ -CSe<sub>2</sub>Me complex by the introduction of hydride ligand using NaBH<sub>4</sub>. The synthesis so far parallels that already described for IrCl(CS)(PPh<sub>3</sub>)<sub>2</sub> [11] but Ir( $\eta^1$ -CSe<sub>2</sub>Me)HCl(CO)(PPh<sub>3</sub>)<sub>2</sub> does not eliminate MeSeH thermally. However, anhydrous HCl gas in benzene solution does cleave MeSeH and form IrHCl<sub>2</sub>(CSe)(PPh<sub>3</sub>)<sub>2</sub>. This colourless material is easily dehydrohalogenated with a base like triethylamine to IrCl(CSe)(PPh<sub>3</sub>)<sub>2</sub> which forms orange, needle-like crystals, m.p. 247-249°C. There is a strong IR absorption at 1198 cm<sup>-1</sup> which must be associated largely with C-Se stretching.  $\nu$ (CSe)

#### TABLE 1

| Compound <sup>b</sup>                                                        | ν(CSe)     | Other bands               |
|------------------------------------------------------------------------------|------------|---------------------------|
| $Ir(\eta^2 - CSe_2)Cl(CO)(PPh_3)_2$                                          | 1005, 995  | 2025, 2000, 1990, v(CO)   |
| $[Ir(\eta^2 - CSe_2 Me)Cl(CO)(PPh_3)_2)ClO4$                                 | 1000       | 2045, v(CO)               |
| $Ir(\eta^2 - CSe_2 Me)HCl(CO)(PPh_3)_2$                                      | 860        | 2045, v(CO); 2000, v(IrH) |
| IrCl(CSe)(PPh <sub>1</sub> ),                                                | 1198       |                           |
| IrHCl <sub>2</sub> (CSe)(PPh <sub>3</sub> ) <sub>2</sub>                     | 1200       | 2240, ν(IrH)              |
| IrCl <sub>3</sub> (CSe)(PPh <sub>3</sub> ) <sub>2</sub>                      | 1201       |                           |
| [Ir(CSe)(MeCN)(PPh <sub>3</sub> ) <sub>2</sub> ]ClO                          | 1184       | 2320, v(CN)               |
| [Ir(CSe)(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> ]ClO <sub>4</sub> | 1145       | 2060, 2000, v(CO)         |
| IrH <sub>1</sub> (SeMe)(PPh <sub>3</sub> ) <sub>3</sub>                      |            | 2130, 2050, v(IrH)        |
| Ir(O <sub>2</sub> )Cl(CSe)(PPh <sub>3</sub> ) <sub>2</sub>                   | 1165       | 848, ν(O <sub>2</sub> )   |
| $Ir(\eta^2 - CSe_2)Cl(CSe)(PPh_3)_2$                                         | 1175, 1010 | • • •                     |
| [Ir(C[SeMe]SeC[SeMe])I2(PPh3)2]CIO4                                          | 863        |                           |

IR DATA <sup>a</sup> FOR IRIDIUM SELENOCARBONYL COMPLEXES

 $a \text{ cm}^{-1}$  measured as Nujol mulls. b All compounds have satisfactory elemental analyses.

bands for other selenocarbonyl complexes reported here are collected in Table 1.

Like  $IrCl(CO)(PPh_3)_2$ ,  $IrCl(CSe)(PPh_3)_2$  is readily oxidised by  $Cl_2$  to  $IrCl_3(CSe)(PPh_3)_2$ , with oxygen forms a dioxygen adduct  $Ir(O_2)Cl(CSe)(PPh_3)_2$ , and with  $AgClO_4$  in acetonitrile forms  $[Ir(CSe)(MeCN)(PPh_3)_2]ClO_4$ . From



C99

## C100

this cation other cations, e.g.  $[Ir(CSe)(CO)_2(PPh_3)_2]^*$  can be readily derived. Unlike  $IrCl(CO)(PPh_3)_2$ , however, it should be noted that  $\nu(CSe)$  values for these adducts (see Table 1) do not necessarily rise upon oxidation or conversion to a cation. In fact the dioxygen adduct has  $\nu(CSe)$  lowered by 33 cm<sup>-1</sup> from  $IrCl(CSe)(PPh_3)_2$ . This must reflect extensive mixing of  $\nu(CSe)$  modes with lower energy modes particularly  $\nu[Ir-(CSe)]$ .  $\nu(CSe)$  is not, therefore, a useful measure of metal electron density in the way in which  $\nu(CO)$  is so useful.

Reaction of  $IrCl(CSe)(PPh_3)_2$  (Scheme 2) with NaBH<sub>4</sub> in the presence of PPh<sub>3</sub>, which in the case of  $IrCl(CO)(PPh_3)_2$  and  $IrCl(CS)(PPh_3)_2$  leads to  $IrH(CO)(PPh_3)_3$  and  $IrH(CS)(PPh_3)_3$ , respectively, leads here instead to complete reduction of the selenocarbonyl ligand and the final product is  $IrH_2(SeMe)(PPh_3)_3$ . This reduction must proceed via selenoformaldehyde-coordinated intermediates. Osmium selenoformaldehyde complexes are now known [12].

CSe<sub>2</sub> reacts with IrCl(CSe)(PPh<sub>3</sub>)<sub>2</sub> to form the adduct Ir( $\eta^2$ -CSe<sub>2</sub>)Cl-(CSe)(PPh<sub>3</sub>)<sub>2</sub>. Methylation of the  $\eta^2$ -CSe<sub>2</sub> in this molecule with MeI giving [Ir( $\eta^2$ -CSe<sub>2</sub>Me)Cl(CSe)(PPh<sub>3</sub>)<sub>2</sub>]<sup>+</sup>, is followed by immediate condensation between the diselenomethyl-ester ligand and CSe and further methylation at Se forms the novel metallacycle [Ir(C[SeMe]SeC[SeMe])I<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>]<sup>+</sup>. Similar condensations occur between thiocarboxamide and thiocarbonyl ligands and the cyclic ligand resulting in this case has been structurally characterised [13]. The general reaction may be written:



 $(X = S, Se, Y = NR_2, SMe, SeMe, etc.)$ 

## References

- 1 B.D. Dombek and R.J. Angelici, Inorg. Chem., 15 (1976) 2397.
- 2 G.R. Clark, T.J. Collins, K. Marsden and W.R. Roper, J. Organomet. Chem., 157 (1978) C23.
- 3 T.J. Collins and W.R. Roper, J. Organomet. Chem., 159 (1978) 73.
- 4 G.P. Elliott, W.R. Roper and J.M. Waters, J. Chem. Soc. Chem. Commun., (1982) 811.
- 5 G.P. Elliott, and W.R. Roper, J. Organomet. Chem., 250 (1983)
- 6 I.S. Butler, D. Cozak and S.R. Stobart, Inorg. Chem., 16 (1977) 1779; G.R. Clark, K.R. Grundy,
- R.O. Harris, S.M. James and W.R. Roper, J. Organomet. Chem., 90 (1975) C37. 7 P.J. Brothers, C.E.L. Headford and W.B. Roper, J. Organomet. Chem., 195 (1980) C2
- P.J. Brothers, C.E.L. Headford and W.R. Roper, J. Organomet. Chem., 195 (1980) C29.
  G.R. Clark, K. Marsden, W.R. Roper and L.J. Wright, J. Amer. Chem. Soc., 102 (1980) 1206.
- 9 W.R. Roper and A.H. Wright, J. Organomet. Chem., 233 (1982) C59.
- 10 K. Kawakami, Y. Ozaki and T. Tanaka, J. Organomet. Chem., 69 (1974) 151.
- 11 T.J. Collins, W.R. Roper and K.G. Town, J. Organomet. Chem., 121 (1976) C41.
- 12 C.E.L. Headford and W.R. Roper, J. Organomet. Chem., 244 (1983) C53.
- 13 G.R. Clark, T.J. Collins, D. Hall, S.M. James and W.R. Roper, J. Organomet. Chem., 141 (1977) C5.